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In this paper we present results from a numerical investigation of turbulent channel
flow in the presence of a compliant wall. The compliant wall is modelled as a
homogeneous spring-supported plate. The simulation code is validated both by
comparison with an alternative code and by reproducing results of linear stability
theory. Our results demonstrate that with the wall compliance we used in the
simulation there is little change in the very long-time behaviour of the turbulent skin
friction drag and little modification to the near-wall turbulent coherent structures. The
values of pertinent statistical quantities of the turbulence near the compliant walls
converge to those near a rigid wall and the statistical effect of the wall compliance
on the turbulent channel flow is small.

1. Introduction
The flow in and around many technical devices creates turbulent boundary layers,

which can lead to significant losses in efficiency. Thus, reducing this turbulent drag,
which is responsible for a large part of the drag experienced by airplanes, ships and
submarines, and reducing turbulent sound production, which, among other things, is
the major source responsible for the noise inside the cabin of transport aircraft, are
particularly desirable goals. Skin friction reduction can be achieved through various
methods of boundary layer manipulation, which include active or passive transition
delay and turbulence control. A number of strategies have been proposed for this
purpose, such as polymer or particle additives, blowing and suction, LEBUs, riblets,
and compliant coatings, as well as methods for active control. Reactive boundary
layer manipulation requires sensors, actuators and control algorithms. The necessary
technology is far from mature at present and it is not clear whether the associated
development effort will ultimately pay off (Lumley & Blossey 1998). The use of
compliant walls as a simpler passive means appears an attractive alternative (Gad-el-
Hak 1998) . In particular, although the maximum amount of drag reduction that can
be achieved using compliant walls may be less than that demonstrated numerically
for methods of reactive turbulence control, compliant walls do not use any energy to
achieve their drag-reducing effect. This is in stark contrast to methods for reactive
turbulence control, which usually require significant amounts of energy, which, in all
experiments that have been done up to now, far exceed the energy that could be
saved via drag reduction.

Thus the idea of using a compliant wall with a tailored dynamic response to pressure
disturbances from a turbulent wall layer is a potentially attractive one. Having said



12 S. Xu, D. Rempfer and J. Lumley

that, we are well aware of the history of related research some twenty-five years
ago. At that time, following observations by Kramer (1961) on exceptional swimming
capabilities of dolphins, there was a long series of what now has to be described as
failed experimental attempts to verify compliant wall technology. This body of work
is described in Bushnell, Hefner & Ash (1977). After these negative results, studies
of this type were effectively discredited, at least from an experimental point of view.
With regard to this history, two more points are worth noting:

(i) The exact reasons for the failure of the experiments were not always clear,
and, in particular, to this day nothing definitive can be said about whether or not
compliant surfaces may be able to significantly reduce turbulent drag or sound
production. We believe that the obvious benefits that compliant surfaces may give
warrant taking another, more detailed look at this problem, in our case from a
more theoretical perspective and using modern approaches based on low-dimensional
modelling (Rempfer et al. 2001), and direct numerical simulations of turbulent flows.

(ii) Despite the relative wealth of experimental data, there are very few results
available on the effect of compliant walls on the structure and properties of turbulent
wall layers. Kireiko (1991) analysed the interaction of a compliant wall with near-wall
turbulence by using the monoharmonic approximation and concluded that the
interaction appears resonant in character and a considerable reduction in turbulent
skin friction may be possible for certain values of wall parameters. Semenov (1991)
proposed a set of conditions for modelling and choosing viscoelastic coatings for
drag reduction according to a hydraulic smoothness requirement and interference
theory, in which the linear harmonic solution to the interaction is obtained for a
given pressure fluctuation spectrum using a simplified linear near-wall turbulence
model. The first of his conditions is a requirement of quick attenuation or absence
of free vibrations of the coating. The second one requires a limitation of the coating
compliance such that the allowable amplitude of the wall deformation remains below
r+ = 6 (where r+ is the wall roughness height in wall units). The third condition states
that the natural frequency of the wall should be chosen in order to ensure a large
phase–frequency region of favourable interaction. Kang & Choi (2000) have studied
active walls deformed according to successful control strategies for drag reduction
in turbulent channel flows. They found that overall 13%−17% drag reduction can
be obtained with active wall motions. Turbulence intensity and near-wall streamwise
vortices can be significantly weakened and instantaneous wall shapes are elongated
in the streamwise direction. From these results it is natural to ask whether it might
be possible to design a compliant surface with elastic properties such that the wall,
driven by pressure disturbances from the flow, would move ‘by itself’ in the same way
as the one used in Kang & Choi’s study. It is this question that we will study in more
detail below.

We also note that a number of investigations have been aimed at delaying boundary
layer transition (which is a relevant flow regime in the case of the dolphin) using
compliant coatings. Results of numerical studies indicating benefits from compliant
walls in the area of transition delay were reported by Carpenter & Morris (1990)
and by Davies & Carpenter (1997). The case of transition manipulation is interesting,
because in that case there is quite an extensive body of theoretical material on
this problem, which is described by the linear stability theory and the asymptotic
theory of transitional flows over compliant walls or in compliant channels (see Gajjar
& Sibanda 1996; Larose & Grotberg 1996; Lucey & Carpenter 1995; Reutov &
Rybushkina 1998; Riley, Gad-el-Hak & Metcalfe 1988; Yeo, Khoo & Zhao 1999).
In fact, linear stability theory can provide satisfactory explanations for the failure of
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many experimental attempts aimed at delaying the onset of transition over compliant
walls. It turns out that substantial postponement of laminar–turbulent transition is
possible through the use of properly designed compliant walls and laminar flow may
be maintained to indefinitely high Reynolds numbers through the use of multiple-
panel compliant walls tailored for the local flow environment (Carpenter, Davies &
Lucey 2000).

In the present paper we investigate the interaction of a compliant wall with
turbulence by performing direct numerical simulations of a turbulent flow in a
minimal channel flow unit (MFU) (Jiménez & Moin 1991). The MFU represents
a channel flow with periodic boundary conditions for the spanwise coordinate. The
fundamental spanwise wavelength of the MFU represents the smallest width of such
a channel at which sustained turbulence is possible. Physically this means that, on
average, the MFU can accommodate just one pair of the vitally important high- and
low-speed streaks and corresponding rolls of near-wall turbulence. The advantage
of this setup is that it allows us to perform direct numerical simulations with a
minimal amount of computational effort. Since we have found that one needs to
simulate the flow dynamics over times spanning several thousand outer units in order
to achieve reliable statistics (see below), this simplification was vital at the current
exploratory stage of our work. It is also worth mentioning that the MFU, despite this
simplification, still retains all of the fundamental physics of turbulence, see Jiménez
& Moin (1991).

Two questions arise regarding this investigation. What phenomena are observed?
What are the mechanisms behind these phenomena (and how can we possibly exploit
these mechanisms in order to minimize turbulent drag)? Since we are reporting work
in progress here, we mainly describe our preliminary answers to the first question.

2. Fundamental equations
The problem we are considering is basically a fluid–solid problem. On the fluid side,

we have the incompressible Navier–Stokes equations as the model for fluid motion.
On the solid side, we use a spring-supported plate to model a compliant wall. The
equation governing the wall-normal motion of this plate non-dimensionalized by
the average half-channel height h and the laminar centerline velocity u0 reads
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where η is the wall-normal displacement, pw is the pressure disturbance on the wall
and C0, C1, C2, C3, and Cx(Cz) are the non-dimensional wall properties defined as
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The wall parameters are: the plate density ρm and thickness b, the wall damping
coefficient d , the flexural rigidity of the plate B , the streamwise (spanwise) tension
per unit width Tx(Tz) and the spring stiffness KE; ρ is the density of the fluid and ν is
its kinematic viscosity. We will assume that our wall is homogeneous, with uniform
elastic properties, so that all of the above parameters are constant except the damping
coefficient.

Depending on our choice of parameters, the compliant wall can act like a thin
membrane (for B → 0), or like a rigid plate (when B → ∞). For the cases to be
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discussed below, we have chosen walls that are very flexible, closely approximating the
behaviour of a thin membrane. The turbulent channel flow we simulate is assumed
periodic in the streamwise (x1 or x) and spanwise (x3 or z) directions and has a rigid
upper wall and a compliant lower wall that are separated by an average distance
of 2h in the wall-normal (x2 or y) direction. Re is its Reynolds number based on h

and u0.
The main difficulty of the simulation is handling the boundary conditions at

the moving compliant wall. We use a time-varying coordinate transformation to
eliminate the deformation of the compliant boundary in the computational domain.
The continuity equation in the computational coordinate system becomes

ui
; i = 0, (2.3)

and the momentum equation in the rotational form becomes
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where ui is a contravariant velocity component, the semicolon denotes covariant
differentiation, T −1 is the inverse coordinate transformation function in the wall-
normal direction, and gij is the contravariant metric tensor of the transformation.
The equation for pressure p is obtained by taking a covariant differentiation with
respect to xi of the momentum equation (2.4) and can be written as(
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The boundary conditions for velocity must also be transformed into the new
coordinate system. The boundary conditions for pressure can then be determined
indirectly from the incompressibility condition via an influence matrix technique. A
Fourier–Galerkin and Chebyshev–Tau pseudospectral method for spatial discretiza-
tion and a three-sub-step Runge–Kutta method for time advancement are used for
solving the equations. For detailed numerical procedures we refer to Carlson, Berkooz
& Lumley (1995).

3. Results
The computational domain sizes in the streamwise and spanwise directions are

Lx = Lz = 4π/5 and the computation is carried out using 32 × 65 × 96 (in x, y, z)
grid points for a Reynolds number of 3000. We are simulating the evolution of the
flow in a three-dimensional channel that has a compliant wall at y = −1 and a rigid
wall at y = 1. In addition, as a reference case for comparisons, we have simulated
the turbulent flow in a canonical channel composed of two rigid walls with the same
flow parameters as those for the compliant-wall cases. In each case the mean pressure
gradient is calculated at each time step to enforce constant mass flux in the channel.
We have checked that increasing our grid resolution does not significantly change
the results. Also, the energy spectra indicate that the resolution of the simulation is
sufficient.

3.1. Code validation

The reliability of the simulation depends on whether the code can accurately
represent the velocity boundary conditions on a moving boundary, which can be
tested using active (prescribed) wall motion. If the wall deformation amplitude is
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Figure 1. Time evolution of the production term −〈uv〉du/dy for channel flows at Re = 3
with identical initial conditions. (a) Flow simulated using linearized boundary conditions in
a channel having one compliant wall with average position at y = −1. (b) Flow in the same
channel simulated by the direct simulation code using coordinate transformation. (c) Flow in
a canonical rigid channel.

large enough, nonlinearity will set in. These nonlinear tests have been performed,
successfully, by Carlson et al. (1995).

In order to further validate our code and confirm that we can achieve a numerical
accuracy that is appropriate for the effects we are interested in, we have performed two
additional types of assessments. The first of these compares the results obtained with
two different nonlinear DNS codes, which differ in the way the boundary conditions
are implemented, as described in the following paragraph. As a second test, we used
our DNS codes to simulate the behaviour of very small disturbances and checked
that the DNS solutions reproduce results from linear stability theory.

3.1.1. Linear tests

When the displacement of the compliant wall is very small, the velocity boundary
conditions at the moving wall can be linearized. We developed a code using such
linearized boundary conditions to simulate a laminar flow with parabolic mean and
two-dimensional disturbances in a compliant channel. We emphasize that linearized
boundary conditions were used for the sole purpose of validating the accuracy of
our code using coordinate transformation, which is equivalent to a fully general,
nonlinear boundary condition. All of the results presented in § 3.3 of this paper were
obtained with the general nonlinear boundary conditions. As shown in figures 1–3,
the flow evolution and the compliant-wall motion agree well with those simulated by
our direct simulation code using a time-dependent coordinate transformation. Thus,
we can assume that this coordinate transformation correctly captures the effects of
the moving compliant wall in our simulation.

3.1.2. Comparison with linear theory

In addition, in order to assess the accuracy with which our numerical scheme
couples the compliant wall motion with the fluid dynamics of the flow and integrates
the transport of momentum as described by the Navier–Stokes equation, we can
also test our codes by comparing the temporal growth rates computed from direct
simulation with those from the linear stability theory for small-amplitude disturbances
in a compliant channel.
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Figure 2. Velocity and pressure field at time t = 2 for the same flows as in figure 1(a–c).
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Figure 3. Displacement and contours of the wall-normal velocity at two different times at the
compliant wall of the channel. (a) Simulation using linearized boundary conditions.
(b) Simulation using coordinate transformation.

For the purposes of this test it is sufficient to consider two-dimensional disturbances
only. The disturbance streamfunction for this case is

Ψ (x, y, t) = φ(y)eiα(x−ct), (3.1)

where α is the wavenumber and c = cr + ci i is the phase velocity. Substituting Ψ into
the linearized vorticity equation gives the Orr–Sommerfeld equation,

(U − c)(D2 − α2)φ − D2Uφ =
1

iαRe
(D2 − α2)2φ, (3.2)

where U (y) = 1 − y2 is the mean velocity profile and D:= d/dy . The pressure disturb-
ance and the compliant wall displacement can be written as

p(x, y, t) = p̂(y)eiα(x−ct), η(x, t) = η̂eiα(x−ct). (3.3)

We assume that the effect of mean flow pressure gradient on the compliant wall is
balanced in such a way that the average location of the wall is at y = −1. We define
the wall admittance Y (α, c) as

Y (α, c) =
iαc

α2c2C0 + iC1αc − (α4C2 + α2Cx + C3)
, (3.4)

which gives the ratio of the wall velocity to the perturbation fluid pressure at the
wall. Thus we have

p̂(−1) =
iαcη̂

Y (α, c)
. (3.5)
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From the x-momentum equation for the fluid we can obtain the disturbance pressure
on the wall as

p̂(−1) =

{[
−(U − c) +

1

iαRe
(D2 − α2)

]
Dφ + DUφ

}
y=−1

. (3.6)

No-slip and no-penetration boundary conditions on the upper rigid wall at y = +1
give

Dφ(+1) = φ(+1) = 0, (3.7)

and the linearized boundary conditions at y = −1 are

u(−1) ≈ −ηDU (−1) =⇒ Dφ(−1) = −η̂DU (−1),

v(−1) ≈ ∂η

∂t
=⇒ φ(−1) = cη̂.

}
(3.8)

If we eliminate η̂, the boundary conditions (3.8) together with equation (3.6) can be
written as

DU (−1)φ(−1) + cDφ(−1) = 0,

αφ(−1) + iY (α, c)p̂(−1) = 0.

}
(3.9)

We use a Chebyshev method (Zebib 1984) to solve the Orr–Somerfeld equation. After
expanding φ(4) in Chebyshev polynomials,

φ(4) =

N∑
j=0
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and integrating (3.10) four times, we obtain
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(3.11)

where c1, c2, c3 and c4 are four integral constants. From the boundary conditions (3.7),
(3.9), these four constants can be computed as

ci =

N∑
j=0

cij aj , i = 1, 2, 3, 4. (3.12)

In the above expression, cij takes the form

cij =
Nij (c)

Dij (c)
, (3.13)

where the numerator and denominator are third-order polynomials with respect to the
phase velocity c. The usual Galerkin procedure for the Orr–Sommerfeld equation (3.2)
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Figure 4. Comparison of eigenvalue (c = cr + ci i) spectra for two-dimensional flows with
Re = 10 000 and α =1.0 in compliant channels and a rigid channel. (a) The compliant
channel has one compliant wall with C0 = 1, C1 = 0, C2 = 1 × 10−6, C3 = 2, Cx = 2.
(b) The compliant channel has one compliant wall with C0 = 1, C1 = 0, C2 = 1 × 10−6, C3 = 1,
Cx = 1. (c) The compliant channel has one compliant wall with C0 = 1, C1 = 0, C2 = 1 × 10−6,
C3 = 0.002, Cx = 0.002. Crosses: rigid channel, circles: compliant channel.

then leads to a polynomial eigenvalue problem of the form(
4∑

k=0

ckLk

)
a = 0, (3.14)

where a = (a0,. . .,aN ) is the vector formed by the Chebyshev coefficients and matrices
Lk are independent of c. The companion matrix method (Bridges & Morris 1984) is
used to solve the problem.

Our linear stability analysis indicates that compliance of one wall of a plane channel
can modify or eliminate eigenmodes that are found in the corresponding rigid channel
and also bring new eigenmodes. With increasing wall compliance, we observe how
the unique unstable eigenmode present in the rigid channel is first slightly modified
(figure 4a), before being eliminated completely (figure 4b). If we make the wall still
‘softer’, new unstable eigenmodes appear (figure 4c).

Due to the use of a time-dependent coordinate transformation in our direct simu-
lation, the computational mesh for a compliant channel is varying in time. In order
to validate this code, we therefore picked the unstable eigenmode for a rigid channel
as given in figure 5(a) for our first test, and computed its growth rate as obtained
from the data of a direct simulation to compare it with that from the linear theory.
Thus, for this test the motion of the compliant wall is ‘turned off’, turning the
compliant channel into a rigid one. The complex phase velocity computed from
the direct simulation code is cS = 0.237526 + 0.00373967i, which perfectly matches
the eigenvalue cl = 0.237526 + 0.00373967i from linear theory.

In order to be able to perform a comparison with linear theory for the case of a
compliant wall, we picked the eigenmode given in figure 5(b). Since the moving mesh
makes it difficult to directly compare results from linear theory to data from the DNS
code that uses exact boundary conditions, we use the DNS with linearized boundary
conditions for this second comparison. Thus, we compare the complex phase velocity
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Figure 5. Normalized eigenfunctions for the u- and v-component of the disturbance velocity,
for two-dimensional flow with Re = 10, 000 and α = 1.0 in (a) a canonical rigid channel with
the corresponding phase velocity c = 0.237526 + 0.00373967i, and (b) a compliant channel
having one compliant wall with C0 = 1, C1 = 0, C2 = 1 × 10−6, C3 = 0.002, Cx =0.002 and
the corresponding phase velocity c =0.427352+0.221993i. Solid line: real part, dashed line:
imaginary part.

of the eigenmode in figure 5(b), cl = 0.427352 + 0.221993i, to that obtained from
our DNS code using linearized boundary conditions. The phase velocity obtained
from the direct simulation for this case is cS = 0.427241 + 0.221097i, indicating
excellent agreement. In addition, in figure 6 we are comparing the distribution of
the disturbance amplitude along the y-coordinate as obtained from our DNS code
to the corresponding linear eigenfunctions. Again, the two velocity distributions
show very good agreement. Since we have also shown above that the two DNS
codes produce results that closely match, we are confident that our coordinate
transformation can accurately simulate the effect of a compliant wall in a turbulent
channel.

3.2. Monoharmonic analysis

An important issue in this investigation of the interaction of turbulence with a
compliant wall is the question of how to choose the values of the compliant wall
parameters. There exists little theoretical guidance in this respect. A compliant
wall should not be too compliant otherwise flutter, see figure 4(c), and static-
divergence waves will appear and the skin friction will increase. We have seen a
static wave on a compliant wall in our trial simulation, which grew with time and
caused the simulation to diverge. The wave did not, however, take the peculiar shape
revealed in the experiments of Gad-el-Hak, Blackwelder & Riley (1984). Lucey et al.
(1997) have shown that it is necessary to include nonlinear effects in both the fluid
and wall dynamics to explain the peculiar shape.
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Figure 6. Amplitude of disturbance velocity u and v at time t = 1 corresponding to
(a) figure 5(a) and (b) figure 5(b). ε is a small positive constant used to initialize the amplitude
of the disturbances in the direct simulation codes. Solid line: linear stability theory, dashed
line: direct simulation.

The numerical requirements for the values of the compliant wall parameters are
straightforward. A compliant wall should move intensively enough so that it phys-
ically interacts with turbulence rather than just generating some numerical noise in
the computational system. The small time scales of wall motion associated with
pressure disturbances of high wavenumbers have to be large enough to guarantee an
acceptable time step in the numerical simulation. Monoharmonic analysis can give us
a reference to choose a compliant wall to satisfy these numerical requirements.

In a monoharmonic approximation for compliant wall motion, a forcing pressure
disturbance is given in a harmonic form:

pw = Re[p̂weikxx+ikzz−iσ t ]. (3.15)

The natural circular frequency ω of the damped vibration and the time constant Cτ

for damping of the compliant wall are then found to be

ω =

{
0 (no vibration) if β � 2ωn,

1
2

∣∣β2 − 4ω2
n

∣∣1/2
if β < 2ωn,

(3.16)

Cτ =




2
[
β −

(
β2 − 4ω2

n

)1/2 ]−1
if β � 2ωn,

2β−1 if β < 2ωn,

(3.17)

where β and ωn are defined as

β =
C1

C0

, ω2
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[
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z + 2k2
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2
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+ Cxk

2
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2
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]
. (3.18)
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Figure 7. Results of the monoharmonic analysis for the motion of a compliant wall with
C0 = 1, C1 = 3, C2 = 4×10−5, C3 = 0.2, Cx = 0.2, Cz = 0.2, Re = 3000, Reτ = 137, p̂w = 0.01.
k2 = k2

x + k2
z .

The steady-state amplitude (in wall units) of the displacement r+ and the wall-normal
velocity V +

w of the compliant wall are

r+ =
Kd p̂wReτ

C0ω2
n

, (3.19)

V +
w =

Kd p̂wσRe

C0ω2
nReτ

. (3.20)

Here, Reτ is the turbulent Reynolds number on the compliant wall, and Kd is the
dynamic coefficient which can be calculated from

Kd =

[(
1 − σ 2

ω2
n

)2

+
β2σ 2

ω4
n

]−1/2

. (3.21)

Figure 7 shows the results of a monoharmonic analysis for the motion of a
compliant wall that we used in the simulation. These and the later simulation results
indicate that the compliant walls we used in the simulation satisfy the numerical
requirements. The values of the compliant wall parameters in the simulation are
given in table 1. Compliant wall II (Case II) has much smaller stretching than
compliant wall I (Case I), but its spring stiffness is large to ensure stable wall–fluid
interaction.

We mention that we have also tried other kinds of compliant walls. One of them
has large flexural rigidity and tension. The very small time scales associated with its
motion could not be captured by the simulation, ultimately leading to instability of
the numerical simulation. We also tried a very soft wall, for which, as expected, the
interaction with the flow is physically unstable. A static surface wave growing with
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Parameters Compliant Wall I Compliant Wall II

C0 1 0.8
C1 3 (=2ζωnC0) 2ζωnC0

C2 4 × 10−5 8 × 10−5

C3 0.2 0.8
Cx 0.2 0.008
Cz 0.2 0.008

Table 1. Values of the compliant wall parameters. ζ (=β/2ωn) is the damping ratio,
as shown in figure 8.
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Figure 8. Damping ratio for (a) compliant wall I and (b) compliant wall II.

time in amplitude appeared which again leads to destabilization of the numerical
code.

3.3. Flow with wall compliance

Figure 9 shows the history of the total drag (represented by the mean streamwise
pressure gradient) and the skin friction coefficients for Case I and Case II against the
reference case of a channel with two rigid walls. Because of the very small amplitude
of the compliant wall displacement, the total drag is almost completely from the skin
friction. Case II begins at time 1076, taking the flow field and the motion of the
compliant wall in Case I at that time as initial conditions. The turbulent skin friction
coefficients on the compliant and rigid walls in all cases have almost the same value
of about 12.6 and the turbulent Reynolds number is about 137. No drag reduction is
observed associated with the two compliant walls. Figure 10 shows that the log-law
region is not shifted above the two compliant walls. The pertinent statistical quantities
in Case I and Case II are compared with the reference case in figure 11. There is
little difference between all cases for each of these statistical quantities. The compliant
walls do not seem to statistically affect the turbulence in their vicinity and near the
opposite rigid walls. But in the viscous region y+ < 10, and only in this region,
the maximum amplitude of streamwise vorticity is suppressed by the nearby compliant
walls, see figure 12. The compliant walls do not seem to have a significant effect on
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the statistics of the maximum amplitude of wall-normal vorticity, spanwise fluctuating
vorticity or Reynolds shear stress.

The instantaneous compliant wall shape and the contours of wall-normal velocity
on the compliant wall in Case I and Case II at two instants tl and th are shown in
figure 13. The skin friction on a compliant wall is low at tl (tl = 814 in Case I, tl = 1894
in Case II) and high at th (th = 1334 in Case I, th = 1933 in Case II), see figure 14.
The contours of streamwise fluctuating velocity and pressure at the surfaces close to
and approximately parallel to the compliant wall in each case are plotted at the same
two instants in figure 15 and figure 16. It can be seen that at the instants of low skin
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Solid line: the reference case, dashed line: Case I, dash-dotted line: Case II.

friction at the compliant walls, the near-wall streaky structures are very obvious on
these surfaces and pressure on them is out of phase with the wall-normal velocity
on the corresponding compliant walls. The compliant walls form longitudinal ridges
beneath low-speed streaks and corresponding grooves beneath high-speed streaks,
even though the contours of the instantaneous wall-normal velocity at the walls are
intermittent and oval-shaped. As shown in figure 17, the flows near the compliant
walls are quiescent when the skin friction at the walls is low, while there are strong
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ejection and sweep events associated with vortices that are present in low-pressure
regions when the skin friction at the walls is high. Correspondingly, the streamwise
vorticity is of small amplitude near the compliant walls at the instants of low skin
friction and large at instants of high skin friction, see figure 18.

Figure 19 shows the time history of the correlations between the velocity of
the compliant wall and various quantities of the turbulence near the wall for the
duration of low-drag and high-drag phases in Case I and Case II. It seems that these
correlations do not directly reflect the fluctuating drag behaviour. The time-averaged
values of these correlations and those between wall pressure and near-wall velocity at
y+ =3 and y+ = 10 for all the rigid and compliant walls are listed in table 2 for both
cases. It can be seen that the correlations associated with the rigid walls for Case I
and Case II are identical and are not affected by the substantially different mechanical
properties of the compliant walls. Compared with the rigid walls, the compliant walls,
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Case I Case II

Correlations Rigid wall Compliant wall Rigid wall Compliant wall

〈pwv1〉 0.34 −0.49 0.34 −0.55

〈pwv2〉 0.25 −0.27 0.25 −0.32

〈vwpw〉 −0.79 −0.80

〈vwv1〉 0.20 0.47

〈vwv2〉 −0.01 0.20

Table 2. Time-averaged values of correlations. The overbar denotes time average. pw and vw

are the wall pressure and wall velocity respectively. v1 and v2 are the wall-normal velocity at
y+ = 3 and y+ = 10 respectively.
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Figure 19. Time history of correlations between quantities of the compliant walls and near-wall
turbulence for the duration of low-drag and high-drag phases in (a) Case I and (b) Case II.
Dotted line: drag, solid line: 〈vwpw〉 (vw and pw are the wall velocity and wall pressure
respectively), Dashed line: 〈vwv1〉 (v1 is the wall-normal velocity at y+ = 3), Dash-dotted line:
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especially the softer wall of Case II show enhanced correlations between their driving
wall pressure and the near-wall velocity at y+ = 3 or y+ = 10. The velocity and wall
pressure on the compliant walls are correlated well negatively, which means the
motion of the compliant walls follows the wall pressure very well. We will return to
this observation below.
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It is commonly assumed that a compliant wall may modify the near-wall coherent
structures and their coherent motions. The near-wall quasi-streamwise vortices are
regarded as playing a dominant role in near-wall turbulence production and transport
(Robinson 1991). By applying blowing or suction on a channel wall with a rate exactly
opposite to the normal component of the velocity at a prescribed y-position, say
y+ =10, significant drag reduction has been achieved by Choi, Moin & Kim (1994)
and the drag reduction mechanism has been related to the suppression of a source
of new quasi-streamwise vortices above the wall. The pressure is, in general, high
underneath the downwash region of two counter-rotating quasi-streamwise vortices
and low underneath the upwash region of such vortices, as supported by figure 19 and
table 2. Can we combine the idea of active turbulence control and the observations
above to conceptually design a compliant wall for drag reduction? If the wall-normal
velocity at a compliant wall is in phase with the pressure but out of phase with the
near-wall velocity, and if it is intensive enough, it may suppress the formation of the
quasi-streamwise vortices and result in drag reduction.

In order to investigate this idea, we decompose the wall pressure field into eddies,
which may be represented by individual Fourier modes. Each eddy is associated with
a time scale which can be estimated from the scale relation between length and
time (Tennekes & Lumley 1972) or from the time corresponding to the peak in the
time spectrum of the eddy energy. In eddy space, the compliant wall is a spring–
damper system driven by a pressure eddy with a particular frequency. We thus need
to choose the values of the wall parameters, which, of course, are functions of eddy
size, so that the velocity of the compliant wall is in phase with the pressure. In order
to find such values, we can study the transfer function G(s), which is defined as the
ratio of the Laplace transforms of the output signal (dη̂/dt in our case) and the input
signal (p̂) with zero initial conditions. Thus the amplitude and phase of the complex
transfer function G(s) = sη̂(s)/p̂w(s) give the steady-state amplitude ratio and phase
lag between the input and the output signals, commonly plotted in the so-called
‘Bode diagram’. Figure 20 shows a Bode diagram for the system taking the pressure
as input and the wall velocity as output. We can see that the phase lag between the
wall velocity and the wall pressure ranges from π/2 to 3π/2 as the frequency σ of the
wall pressure changes. What this tells us is that it is impossible to obtain the desired
positive correlation between the velocity and the pressure.

Thus, it appears that our idea of designing a compliant wall with elastic properties
chosen in such a way that the dynamics of the wall would mimic the motion of
the ‘active wall’ simulated by Kang & Choi (2000) may not work: according to
our results above it is not possible, for any choice of parameters for the kind of
compliant wall we were studying, to achieve the desired phase relation between the
motion of the wall and near-wall velocities at about y+ = 10. We should keep in
mind, however, that the setup of our numerical experiments does not exhaust the
potential configurations of a compliant wall. For example, if we had used a finite
compliant panel similar to the ones described by Carpenter et al. (2000), then there
is the possibility of wave reflection on the boundaries of the panel, which could
change the situation significantly. We will come back to this point in our discussion
below.

Bushnell et al. (1977) hypothesized that a successful compliant wall would delay the
burst formation by producing a modulated pressure gradient superimposed upon
the adverse gradient signal which normally triggers the bursts and suggested that as
a minimum, the wall frequency required is probably of the order of 50 times the
fundamental burst frequency. It has also been hypothesized that any variation in
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the magnitude of dimensionless spanwise wall-streak spacing is accompanied by a
change in the skin friction drag. The flow-visualization experiments by Lee, Fisher
& Schwarz (1993) indicated low-speed wall streaks with increased spanwise spacing
and elongated spatial coherence in a turbulent boundary layer over a single-layer
viscoelastic compliant surface compared with those on a rigid surface. On the other
hand, Gad-el-Hak et al. (1984) reported that no significant differences were found
in the number of recorded streaks and the skin friction coefficients for turbulent
boundary layers over PVC plastisol-gel compliant walls. In our simulations, the
burst frequencies are about the same near all the compliant and rigid walls, see
figure 9. The location, shape and spacing of streaky structures change with time and
it is thus necessary to look at their long-time behaviour to obtain an accurate
relationship between the average drag and their statistics. We did not observe
significant modifications to the shape of the coherent structures in our simulations.
The qualitative picture of turbulence over the compliant walls is about the same as
over the rigid walls in a time sequence covering at least a burst period. Figure 21
shows the spanwise auto-correlation function for streamwise fluctuating velocity u in
Case I, Case II and the reference case. Little quantitative difference is observed near
y = −1, which may indicate that the spanwise coherence of streaky structures does
not change.

It is interesting to note that we could cause a reduction in skin-friction drag by
up to 12%, accompanied by a corresponding upward shift of the log-law region and
reduction in the magnitude of the pertinent statistical quantities of the turbulence
near the compliant wall, by unphysically driving a soft compliant wall with the
negative pressure signal. We found that such an ‘anti-compliant wall’ forms a
longitudinal ridge beneath a high-speed streak and a corresponding groove beneath
a low-speed streak when near-wall streaky structures are not broken down. Kang &
Choi (2000) made similar observations for their active wall control for skin friction
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reduction. However, if the right pressure (with the correct sign) is acting on such
a compliant wall, the wall–fluid interaction becomes unstable. For stiffer compliant
walls, with parameters similar to our Cases I and II, however, artificially inverting
the sign of the pressure disturbances has no statistically significant effect on average
drag.

4. Discussion
In our numerical simulations we have observed that the convergence to a steady-

state average value of the turbulent skin friction drag on a compliant wall takes as long
as up to O(Re) eddy turn-over times. First results of our direct numerical simulation
of the turbulence on the compliant walls indicate no drag reduction over such long
time periods. We note that Endo & Himeno (2002) have reported a drag reduction
of 7% in their numerical simulation of turbulent flow over a compliant surface.
However, their averaging times were much shorter than ours. The simulation data
they used to calculate their statistics spanned 700 viscous times, which corresponds
to about 100 eddy turn-over times. We have found that we can obtain an apparent
drag reduction that is similar to the one found by Endo & Himeno if we average
over an appropriately chosen interval that is as short as theirs. Unfortunately, in
our simulations, any such ‘drag reduction’ all but disappears after extending our
averaging interval to the times reported here.

If we assume that for successful drag reduction the wall should move in a similar
fashion to the one used in the study by Kang & Choi (2000) , meaning that there
should be a positive correlation between the wall velocity and the fluctuating pressure
at the wall, then our evidence seems to indicate that the particular design of a
compliant wall we have investigated may not be promising. We note, however, that
these findings do not yet rule out successful drag reduction using other approaches.
One option would be to allow for non-uniform elasticity properties of the wall,
with a stiffness that varies over the compliant surface. Another potentially promising
avenue would be to follow the lead of Carpenter et al. (2000) and replace our
infinite compliant wall with finite compliant panels of an appropriate (and yet to be
determined) size. In that case one could use fixed boundary conditions at the ends of
the panels, which would cause reflection of the elastic waves in the panel. Such wave
reflections might allow us to achieve the phase relations we need for positive drag
reduction. We will study this idea in further work.
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While our current results are preliminary in nature, they do provide input data for
a proper orthogonal decomposition (POD) analysis and low-dimensional dynamical
systems models based on POD eigenfunctions, see Rempter et al. (2001). Such models
can provide insight into the mechanisms of the interaction between turbulence and
a compliant wall from a dynamical-systems perspective, and can help us choose
compliant walls for drag minimization by adjusting the model parameters even
though the POD analysis is based on direct simulation data that do not exhibit any
drag reduction.

To conserve resources, we performed the simulations in a minimal flow unit. The
use of periodic boundary conditions can be expected to distort the flow physics when
the size of the periodic box is too small. It is not clear in how far (or whether at all) the
results for the minimal channel can be extrapolated to the full channel. According
to Yeo, Zhao & Khoo (2001), compliant surfaces with low damping are susceptible
to convective instability, which gives way to an absolute instability when the surfaces
become highly damped. The compliant walls we used have very high damping while
the Reynolds number of the simulated turbulent flow is low, so we may assume
that all critical wall modes can be represented in our domain size if there are no
static-divergence waves.

Supposing we are looking at a turbulent flow in an infinite compliant channel, can
we just cut out a large enough rectangular compliant channel and apply periodic
boundary conditions to simulate the flow? We probably can if any spatial auto-
correlations across the length and width of the channel decay to zero, the interaction
between the flow and the compliant wall is stable, and the waves excited at a point
of the compliant wall die away before they reach the edge of the region. The last
condition can be checked by analysing the compliant wall dynamics. Let us consider
an infinite compliant wall under the action of pressure disturbances p(x, t), i. e.
uniform in the z-direction. A mathematical model for the compliant wall motion can
then be given as

C0

∂2η

∂t2
+ C1

∂η

∂t
+ C2

∂4η

∂x4
+ C3η − Cx

∂2η

∂x2
= −p(x, t), −∞ < x < + ∞, t > 0,

η(x, 0) = φ(x),
dη(x, 0)

dt
= ψ(x).


 (4.1)

When C2 is very small and is neglected, we can choose C1 = 2
√

C0C3 such that the
analytical solution to η(x, t) can be found as

η(x, t) =
1

2
exp

(
− C1t

2C0

)[
φ(x − at) + φ(x + at) +

1

a

∫ x+at

x−at

ψ(ξ ) dξ

]

− 1

2aC0

∫ t

0

{
exp

[
−C1(t − τ )

2C0

] ∫ x+a(t−τ )

x−a(t−τ )

p(ξ, τ ) dξ

}
dτ, (4.2)

where a =
√

Cx/C0 is the wave speed. The amplitude of a wave excited at one point on
the compliant wall will be damped to 100 exp(LC1/2aC0)% of its initial value after it
propagates a distance of L. For Case I and Case II of our simulations, this percentage
is respectively about 0.022% and 0% for L = L1. If small C2 is not neglected and
C1 > 2

√
C0C3, from the dispersion relation and pressure spectra on the wall we know

that shorter waves can survive for a longer distance due to their faster speed, but
they are of very small initial amplitude. If both C2 and Cx are set to be zero, the
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compliant wall becomes a spring–damper system and does not support wave-like
solutions.

This project is supported by Air Force under contract AFOSR F49620-96-1-0329.
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